人工智能时代到来!五大金融场景正受到冲击
2017-08-17 16:51 作者:沈春泽 来源:苏宁金融研究院

与传统方式有所区别,智能投顾可结合现代资产组合理论和投资者偏好为投资者提供建议,加快释放投资理财的“长尾”市场,具有佣金低和信息透明等特点。更通俗点说,智能投顾实际上是把私人银行的服务在线智能化,服务更广泛的普通老百姓。

当前,智能投顾平台已经在国内市场出现。2016 年12 月,招商银行摩羯智投正式上线,这是国内银行业首家推出的智能投顾服务。据介绍,摩羯智投运用机器学习算法,融入招行多年的业务经验,在此基础上构建了以公募基金为基础的、全球资产配置的“智能基金组合配置服务”。在客户进行投资期限和风险收益选择后,摩羯智投会根据客户自主选择的“目标-收益”要求,构建基金组合,由客户进行决策、“一键购买”并享受后续服务,使得投资小白也可以轻松使用。

应用场景四:营销与客服

在金融平台上,如何识别有效的客户往往是难点。而人工智能可以通过用户画像和大数据模型精准找到用户,实现精准营销。

另外,在客服中,用户咨询的问题大都是重复性的,而且往往限定在几个特定的领域内,这些特点使其成为自然语言处理和智能客服机器人的极佳选择。通过智能客服机器人可以发掘用户的需求,解释和推荐产品,还能带来销售转化。智能客服可以解决用户的大部分问题,在非常确定答案的时候可以直接回答,在不确定时把可能的答案提供给人工客服,由人工客服判断选择最佳答案发送给用户。这样极大地提升了客服效率和用户体验,同时也降低了人力成本。

应用场景五:投资决策

在投资机构和投行部门中,日常的工作如收集大量的资料、进行数据分析、报告撰写等,往往占用了大量的时间和精力。而在处理海量的数据信息时,机器拥有天然的优势,通过自然语言处理技术可以理解文本信息,寻找市场变化的内在规律。一个经典案例是沃尔玛超市发现尿布和啤酒放在一起会增加销量。大数据可以发现看似毫不相关的事件间的关联性,应用在投资领域也会有同样的效果,比如苹果发布新手机会影响哪些公司的股价等。

人工智能还能够根据收集到的市场历史数据进行预测,分析判断企业的成长性,从而辅助投资决策。一个著名例子是,美国最大的信用卡行Capital One的两名员工利用职务便利,分析了至少170家上市零售公司的信用卡消费情况,并据此预测这些公司的营业收入,然后提前购入看涨期权或看跌期权,三年内投资收益率高达1800%。虽然是反例,但对于智能预测应用有很好的启发意义。

此外,机器还可以根据收集到的资料,自动生成大量格式固定的文档,比如招股说明书、研究报告、尽调报告和投资意向书等,从而提高效率,减少枯燥的重复性工作。

结语:

长远来看,人工智的优势是不容忽视的:智能设备可以7 ×24 ×365连续不间断地工作,不需要休息和度假;通过对大量数据进行筛选分析,帮助人们更高效、更准确地决策,降低决策难度;在分析问题时不受情绪和环境的影响,在一定程度上可以避免操作风险和道德风险。而金融行业是天然产生数据的行业,同时也是数据最能产生商业价值的地方,具备了成为人工智能具体实现的巨大优势。


* 除《中国经营报》署名文章外,其他文章为作者独立观点,不代表中国经营网立场。

* 未经本网授权,任何单位及个人不得转载、摘编或以其它方式使用上述作品,违者将被追究法律责任。

* 凡本网注明“来源:中国经营网” 或“来源:中国经营报-中国经营网”的所有作品,版权均属于中国经营网(本网另有声明的除外)。

* 如因作品内容、版权和其它问题需要同本网联系的,请在30日内进行。

* 有关作品版权事宜请联系:010-88890046 邮箱:banquan@cbnet.com.cn